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Abstract 

 

The data deduplication technique identifies the duplicates and minimizes the redundant storage 

data in the backup server. The chunk level deduplication plays a significant role  in detecting 

the appropriate chunk boundaries, which solves the challenges such as minimum throughput 

and maximum chunk size variance in the data stream. To provide the solution, we propose a 

new chunking algorithm called Dynamic Prime Chunking (DPC). The main goal of DPC is to 

dynamically change the window size within the prime value based on the minimum and 

maximum chunk size. According to the result, DPC provides high throughput and avoid 

significant chunk variance in the deduplication system. The implementation and experimental 

evaluation have been performed on the multimedia and operating system datasets. DPC has 

been compared with existing algorithms such as Rabin, TTTD, MAXP, and AE. Chunk Count, 

Chunking time, throughput, processing time, Bytes Saved per Second (BSPS) and 

Deduplication Elimination Ratio (DER) are the performance metrics  analyzed in our work.   

Based on the analysis of the results, it is found that throughput and BSPS have improved. 

Firstly, DPC quantitatively improves throughput performance by more than 21% than AE. 

Secondly, BSPS increases a  maximum of 11% than the existing AE algorithm. Due to the 

above reason, our algorithm minimizes the total processing time and achieves higher 

deduplication efficiency compared with the existing Content Defined Chunking (CDC) 

algorithms. 
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1. Introduction  

In recent CISCO and International Data Corporation (IDC) studies, three areas have been 

predicted as important challenges in the datasphere. Firstly, the ever-growing of data storage 

occurs in the cloud data center's in availability zone and regional zone. Secondly, the data 

growth happens in edge computing, and finally, the volume of data increases in a social media 

client system of portable devices and Internet of Things (IoT) devices. According to the study 

report, from 2018 to 2025, IDC estimates storage exponentially increases from 33 ZB to 173 

ZB in the global market [1]. In the above scenario, managing data storage in the cloud becomes 

a challenging task. Hence, the data reduction technique is introduced, namely 'Data 

Deduplication', applied to archived and backup storage files [2]. The advantages of data 

deduplication are to minimize the redundancy and transmission of data, storage cost, and low 

bandwidth of the network [3]. The deduplication technique stores a single copy of data and the 

duplicate chunks are removed to achieve storage space efficiency [4, 5]. The method 

eliminates redundancies at the whole file or chunk level and removes redundant data through 

their cryptographically protected hash signatures using the SHA1 fingerprint algorithm. The 

data deduplication process breaks the input in the form of chunks [6, 7].   

The input files are divided into chunks, and the duplicates are identified and processed into 

five stages. The stages are chunking, fingerprinting the hash value, indexing the hash, 

compression technique [8], and managing the data in an extensive storage system. The 

compression stage is optional among these stages because it applies only to the traditional 

compression approach like LZ compression and delta compression [9, 10]. Data deduplication 

plays a vital role in the final stage of the storage management. Therefore, data storage is 

categorized into a different specification. They reduce fragmentation, garbage collection, 

provide reliable data, and secure data [11, 12]. Nowadays, the data deduplication technique is 

widely applied at the chunk level to reduce the repeated data. The detection of deduplication 

at the chunk level has been performed in the existing approaches by using a byte-level sliding 

window. The window is small in size and helps to match the string by comparing a bytes in 

storage system. Hence, in comparison with file-level deduplication, chunk- level deduplication 

has more merits [13, 14]. 

The chunking method is efficient for breaking the data input stream into small pieces or 

chunks. The chunking method is the first stage of the deduplication system [15]. Chunking in 

data deduplication is processed in two types, fixed size and variable size [16]. The content 

position splits each chunk into a fixed size. The Fixed Size Chunking (FSC) is the fastest 

chunking approach that divides the file or data input stream into equivalent size [17]. The 

advantage of FSC made the chunking process easy and straightforward approach.  The 

algorithm achieves a high-speed chunking method and high chunk throughput. The chunk 

level deduplication analysis shows the detection and removal of repeated data that occurs at a 

level of fine-granularity. FSC method provides a possible solution for the file-level chunking 

algorithm [18, 19].  

The main disadvantage of FSC is less deduplication efficiency and face boundary-shift 

problems [20, 21]. Due to the boundary shifting problem, FSC fails to find duplication and 

elimination of chunks. New variable-size chunking methods are proposed, namely, Content-

Defined Chunking (CDC) [22, 23] determines the boundary-shifting issues by declaring chunk 

boundaries depending on the local content of the data input stream. Based on the CDC's 

internal data content, the chunk will not change the chunk boundaries and data content. Hence, 

it will not affect the cloud-storage efficiency. Different CDC algorithms are available, among 

these, we focus on the CDC algorithm, such as Rabin [24], Two-Thresholds-Two-Divisors 
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(TTTD) [23], MAXP [25], and Asymmetric Extremum (AE) [26].  Pooranian et.al introduced 

new techniques, namely LEVER and RARE that are different algorithms used to enhance the 

chunk variance efficiently and the dynamic processing threshold for securing the CDC data 

deduplication in cloud storage [27, 28]. Next, we compare and analyze different CDC 

algorithms, the main list of key properties is given below [29]. 

Content defined: This algorithm solves the boundary shifting problem intelligently by 

deciding the breakpoint based on the predetermined condition. Here, it avoids the modification 

in the content of the file. This advantage makes a high impact in determining the duplicate 

chunks in the data input stream. 

Low computational overhead: The CDC techniques involve measuring the chunk 

boundaries of each byte in a data input stream. The processing time is approximately 

proportional to the total amount of input data bytes, which can occupy enormous CPU 

resources. Therefore, it consumes more time and targets high deduplication performance.  

Small chunk variance: In the chunking process, the CDC algorithm divides the chunk and 

stores the chunk into a disk using the deduplication. The long-sized chunk variance affects the 

performance of storage, and it additionally decreases the deduplication efficiency. CDC 

produces small chunk variance and improves deduplication elimination ratio. 

Rabin degrades in the three issues, such as less throughput, high chunk variance, and 

minimum deduplication performance [24] because the data stream calculates byte by byte. The 

TTTD used smaller chunks but could not identify data deduplication for increased chunk size. 

Therefore, Rabin and TTTD are a time-consuming processes and to solve the issues,                 

Bjørner et al. [25] introduced a new approach, namely MAXP. The MAXP algorithm applies 

two fixed size windows and an extreme value. The process cuts the chunk based on the 

breakpoints. Hash value calculation is not performed in MAXP. To overcome the issues of 

MAXP and Rabin, a new CDC approach, AE [26] is proposed. The AE processes the chunk 

breakpoint using fixed and variable size window. But, the sliding window is not used in AE. 

MAXP algorithm has more computational operations. The AE algorithm uses statistical 

properties and is implemented to reduce the computational overhead and reduces the storage 

cost [30].  

In this work, we aim to minimize the computational overhead compared with the previous 

CDC algorithms.  Therefore, to overcome the challenges of existing algorithms, we propose 

the Dynamic Prime Chunking algorithm (DPC), which reduces the computational overhead 

and improves chunking throughput. DPC is similar to AE but it uses variable size window 

rather than fixed size. The DPC applies two different windows, namely, variable size and 

dynamic variable size window. The DPC algorithm has no backtracking concepts to determine 

the extreme or maximum value. The bytes are scanned by using two conditional branches and 

one comparison operation. DPC determines min and max limitations on chunk size and has a 

higher advantage in reducing the low entropy bytes of other CDC algorithms. Our 

contributions to this paper are as follows: 

(1) We propose DPC that dynamically varies the window size within the prime number 

based on the min and max threshold and a hash-less CDC algorithm and reduces 

duplication of chunks in the cloud storage. 

(2) Our experimental evaluation of the proposed algorithm for multimedia and operating 

system datasets are illustrated and compared with other CDC algorithms. 

(3) Our DPC analyzes the different performance metrics such as chunking count, 

processing time, chunking time, throughput, BSPS and DER with other CDC 

algorithms. 

(4) From the above study of performance metrics, our proposed algorithm improves the 
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overall throughput and processing time in the deduplication system. 

(5) Our proposed DPC algorithm minimizes the computational overhead compared with 

other existing CDC algorithms. 

(6) We propose the novel DPC chunking algorithm to increase the performance of 

deduplication efficiency in cloud storage. 

The rest of the paper is organized as follows: Section 2 discusses the background of 

existing algorithms and motivation. The design and workflow of the DPC algorithm are 

described in Section 3. Section 4 provides a detailed description of the experimental setup and 

datasets. Section 5 discusses the results and comparative analysis of the existing CDC with 

DPC. Finally, Section 6 concludes the research article with scope for future work. 

2. Background 

Section 2 provides a detailed study on the background of the chunking algorithm, the 

challenges of the existing CDC algorithm, and the motivation of our proposed work. 

CDC method is the essential data element in the data deduplication, which splits the input 

data stream into small blocks or chunks and the data content window before the cut-point 

satisfies a predetermined condition.  Moreover, the CDC algorithm identifies the duplication 

chunks, affected deduplication ratio, and performance of the storage system [31]. 

Muthitacharoen et al. [3] proposed an innovative content-defined chunking algorithm named 

Low Bandwidth File System (LBFS) to break the chunk based on content to solve the 

boundary-shifting problem.  The algorithm works on the file content and calculates the hash 

value of the window by applying sliding window techniques.  Then, it determines the chunk 

cut point as per the value of the window, which satisfies the predefined condition. 

In CDC, most of the researchers used the Rabin algorithm [32] to break the chunk 

boundaries.  The Rabin Fingerprint algorithm reduces the redundant network traffic and finds 

the chunk boundary based on Rabin rolling hash [33]. The algorithm computes a sliding 

window hash value along with a byte of the data, and the window moves every time in entire 

data bytes.  Rabin declares a chunk breakpoint when the hash value of the window is equal to 

a predefined value. Hence, the new Rabin hash can be quickly determined from the old one, 

and it requires conditional controls 1 OR, 2 XOR, two left shifts, and two array lookups per 

byte [12].  Rabin algorithm avoids the small and large chunk size based on the minimum and 

maximum threshold.  The primary deficiencies of Rabin-based CDC produces high chunk size 

variance and computational overhead, and less accuracy of duplicate detection.  The small 

chunks create more fingerprints and occupy more storage space and high cost. But the long 

pieces affect the deduplication efficiency in backup storage 

Due to the deduplication efficiency, Eshghi et al. [23] introduced the Two-Thresholds-

Two-Divisors (TTTD) algorithm to defeat the Rabin chunk size variance.  The working 

principle of the TTTD algorithm uses Basic Sliding Window Algorithm (BSW) technique.  

This algorithm uses two divisors (main, backup divisor) and implement these divisors to create 

a minimum and maximum chunk size. TTTD introduces a new threshold, the backup divisor 

to cut the chunks, which has a maximum probability of breakpoints and reduces the long-sized 

chunk variance [33]. The main benefit of the TTTD algorithm is the improvement of the 

deduplication ratio. But, using a backup divisor, it reduces chunking throughput and impacts 

low deduplication performance.   

Next, we discuss the famous CDC algorithm named MAXP or Local Maximum Chunking 

(LMC) [12], the MAXP algorithm is primarily utilized in remote differential file compression 

techniques. The Rabin needs to calculate a hash value, but MAXP needs no hash value. It 
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handles the byte values by converting into digits, which supports minimizing of the 

computational overhead. MAXP uses two fixed-size windows and maximum local value. This 

technique applies to break the chunk cut-point to divide the input data stream. The main 

disadvantage of the MAXP algorithm is while determining an extreme value,  the fixed-size 

window must move towards  backtrack direction and checks the higher value of current byte 

position must be more than the local maximum point and this position helps to break the 

chunks.  Therefore, MAXP using a backtracking approach needs a more conditional branch, 

and each byte verifies to increase the number of comparison operations. Checking every byte 

in the input stream and more conditional branch operations based on the resulting algorithm 

reduces chunking throughput [34].  

Yucheng et al. [26] introduced a different CDC algorithm, namely, an Asymmetric 

Extremum (AE) to perform a fast deduplication method in the storage system of the cloud.  

AE is based on the maximum local approach or MAXP since it applies a digit as a number in 

the input stream of data. The chunk uses the two windows and helps AE to become less 

overhead computation than the MAXP algorithm [35, 36]. The process of AE has two windows, 

the first one is a fixed window with a byte inserted, and this will change the chunk. The next 

chunk disturbs the subsequent fragments. The algorithm puts the maximum value of the byte 

at each cut-point of the chunk and enters a new byte, which will not change the next chunk. 

Therefore, the process of the AE algorithm reduces the number of affected bytes. AE is 

intelligent in reducing low entropy bytes as it has a maximum data chunk size and achieves its 

larger chunk size with a long sequence. The algorithm delivers the maximum efficiency in 

deduplication and increases the chunking throughput [37]. 

 

Table 1.  Key Properties of various CDC Algorithms 

 

 

Chunking 

Algorithms 

Key Properties 

Content 

Defined 

Processing 

Time 

Chunk 

Variance 

Computational 

overhead 

Efficient 

low-entropy 

strings 

Limits on 

chunk 

Size 

Rabin Y H H H N Y 

TTTD Y H H H N Y 

MAXP Y H L H N N 

AE Y M L L H N 

DPC Y L L L H Y 

L – Low, M – Medium, H – High, Y – Yes, N – No 

 

Motivation: The primary role of the data deduplication process is chunk based because it 

applies to the cross-level file redundancy. CDC's higher deduplication system compares with 

FSC [26]. So the CDC algorithm is mostly used for chunk-level deduplication techniques. The 

critical issue of low chunking throughput affects deduplication efficiency [18, 39]. The various 

challenges the existing CDC chunking algorithm faces are the fundamental properties such as 

chunk variance, computational overhead, etc., and are tabulated in Table 1. By comparing the 

various features of Rabin, TTTD, MAXP, AE, we infer that our dynamic prime chunking 

algorithm proposed in this work shows the yes, low and high performances. Rabin faces some 

challenges as variance in chunk size, computational overhead, and it will not detect exact 
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duplicate. To solve the issue, TTTD introduces the Min-Max threshold to reduce the chunk 

variance, but the processing time is increased.   

The MAXP approach is computationally high, and entropy strings can not be removed. 

Both the algorithms MAXP and Rabin face the computational overhead high and less chunking 

throughput. The drawback of AE is, it uses an asymmetric sliding window, and concentration 

is less for reducing the chunk time variance. AE produced significant chunk variance to 

decrease deduplication performance. Our proposed work DPC solves the issue of the existing 

four CDC algorithms. We propose a novel DPC algorithm, which increases the chunking 

throughput by providing similar deduplication performance. The DPC works are based on the 

local maximum value and a dynamic variable window without backtracking and solves the 

boundary shifting issue. 

3. Dynamic Prime Chunking Algorithm 

Next, we discuss the detailed design, the workflow of the DPC chunking algorithm, and its 

fundamental vital properties. 

3.1 DPC Design 

 
Fig. 1.  The Design of DPC algorithm 

 

The dynamic prime chunking algorithm improves the version of AE. DPC mainly applies to 

two essential properties, position and value. DPC design uses four steps, as presented in         

Fig. 1. First, read the data input stream from the source side. Start from I, where I is the initial 

byte position of the data input stream. Next, in step 2 we calculate the dynamic window (DW) 

size using prime numbers by applying step 3 of the algorithm.  DPC works with two windows: 
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variable size and dynamic variable size window. The algorithm determines the maximum 

value or threshold (M) is the minimum or maximum value of the input stream. The method 

assigns the threshold value, which is always the extreme or maximum value. The third step 

determines the maximum byte value and finds the chunk boundary based on the two following 

conditions: 

(1) To verify the interval [I, N] is also empty, or M maximum threshold value is more 

significant than all byte values within [I, N]. 

(2) In the dynamic variable-sized window, the extreme value M is not less than the 

value of all bytes between [O, C].  

The initial byte is determined to satisfy the above conditions associated with a threshold 

value ensuring the highest byte point represented as the maximum local value. In contrast, the 

maximum byte position has been determined, DPC declaring the right-most byte as a chunk 

breakpoint in the right side window. Once the chunk boundaries are declared, the algorithm 

returns the breakpoint position C in step four. Next, the initial byte position sequence continues 

as I.  Repeat the above following steps until finding the last chunk boundary of the input data 

stream. Next, we discuss the implementation of the DPC algorithm based on workflow. 
 

Algorithm 1: Dynamic Prime Chunking (DPC)  
Input: input data string, Str; Remaining length of file, RL; 

Output: Chunk break point,  CPi 

1:  Predefined values:  Prime_chunk_size [ ] = {2, 3, 5, 7, 11} 

                         PRCH 5, // prime chunk value is 5 

                         Chunk Counter CC =0  

                         e = 2.718281828   // exponential value 

                          Chunk_Avg_Size = 6 KB   // (2+3+5+7+11)/5 = 5.6 KB ≈ 6 KB 

2:  function DPC_CHUNKING (Str, RL) 

         // Calculate Dynamic Window Size 

3:      DW = 1024 * Prime_chunk_size [ CC % PRCH] / (e-1) 

4:      CPi ← 1 

5:      Max_Value ← Str [CPi ].POS 

6:      Max_Position ← CPi 

7:      CPi  ← CPi + 1 

8:        while CPi < RL do 

9:              if Str[CPi].POS < = Chunk_Avg_Size then 

10:                if CPi  = Max_Position + DW then 

11:                    return CPi  

12:                end if 

13:            else  

14:              Max_Value ← Str[CPi ].POS 

15:              Max_Position ← CPi  

16:           end if 

17:           CPi  ← CPi + 1 

18:      end while 

19:  return RL  

20:  end function 

 

DPC Algorithm Description: The main goal of the DPC algorithm is to divide the input 

string into chunks dynamically based on prime numbers. The input of the algorithm takes two 

parameters the entire input string and the remaining length of the file RL. Five values are 

predefined in the initial step of the algorithm, such as prime chunk size, prime chunk value, 

chunk counter, exponential value (e), and average chunk size. Based on existing work [25], 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 4, April 2021                            1349 

 

 

the value e is assigned in the algorithm. Step 3 calculates the dynamic window by using the 

predefined values. To define the maximum value and position, steps 5 to 6 is processed and 

assign the max value and position. The current location assigns to 1 and Step 8 to 18 repeats 

the while loop by comparing the current position and RL until it reached a false condition. In 

the meantime, the CPi string is compared with the average chunk size as specified in step 8. 

Steps 10 to 17 determine the CPi by applying maximum value and dynamic window for the 

given input string. The comparison made for the entire string and step 19 of the DPC function 

returns the remaining length RL. The computational complexity of DPC is O(n). 

3.2 Workflow of DPC 

 

 
Fig. 2.  The workflow of DPC algorithm 

 

In the given Fig. 2, the initial byte position is denoted as A1, and it moves forward in right 

direction till the end of the byte position B. The entire data stream is divided based on the 

threshold value M1. Then the left byte position that is before the threshold must be a variable 

size window. The interval between the consecutive bytes from A1 to X1 is mentioned as M1. 

The byte position again moves forward from Y1 to B1 as the right move. DPC is also a dynamic 

variable size window, as specified in Chunk 1. The exact process is repeated from chunk 1 to 

chunk N. The reason behind the dynamic window is always the break chunk point is variable 

size.  Whereas in AE, the left alone is the variable size, and the right part is fixed. Hence, the 

consequences are more in AE. Our proposed algorithm DPC utilizes a dynamic window size 

to overcome this issue, which avoids the long chunk sequence and improves the deduplication 

throughput. 
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Table 2. Comparisons of computational overhead difference for CDC 

Algorithm 
Computational overhead 

(per byte scanned) 

Rabin 2 XORs, 1 OR, 2 array lookups, 2 shifts, 

1 conditional branch 

TTTD 
2 mod,1 comparison, 5 conditional branches 

MAXP 2 mod, 2 – 1/p  Comparisons, 

5 + 1/p conditional branches 

AE 
1 comparison, 2 conditional branches 

DPC  1 comparison, 2 conditional branches 

   * p - The expected chunk size 

3.3 Properties of the DPC algorithm 

Now, we are analyzing the behavior of the DPC for the key properties of the CDC. 

 

 
Fig. 3.  Example of DPC 

 

Content Defined: The previous algorithm AE delivers the asymmetric window position 

behind the extreme value and breaks the chunk boundaries. It produces the highest value inside 

each chunk, preferably by holding them in the chunk boundary. The method can slightly 

reduce the deduplication performance, but the algorithm is still CDC as the maximum value 

inside the chunks can additionally reset the chunk boundaries. Unlike AE, the DPC algorithm 

divides the window position dynamically changes based on prime numbers. The consequent 

chunk breakpoint window dynamically varies.  

Consider Fig. 3, for example, M1, M2, and M3 are the three maximum values, Y1, Y2, and 

Y3, denoting the breaking points from the three identical blocks or chunks. Consider the 

maximum local value that will not replace all alterations in the example.  When there is a byte 

insert or delete at variable size window the interval [A1, M1] in Chunk 1, the second chunk is 

to be realigned at the maximum point M1 not changed by the chunk boundary. If the byte 

insertion is within the interval of the dynamic variable size window (M1, B1), the beginning 

point of second Chunk 2 will be modified, and the maximum value M2 must realign the 

boundary to avoid affecting the third chunk. When a string of consecutive chunks has changed, 

the last updated chunk's efficiency loss has been determined by the modifier's location. If the 

adjustment is before the extreme value, then there will be no loss of performance. Otherwise, 

only one duplicate chunk is changed immediately following that modified region will get 

affected. Our proposed algorithm improves deduplication performance based on chunk 

variance and bytes saved per second (BSPS). 
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Fig. 4.  Design of the strategic difference between CDC algorithm Rabin, MAXP, AE, and DPC 

 

Low Computational overhead: Table 2 shows the computational overhead and processing 

time variance of different multimedia data sets with five algorithms: Rabin, TTTD, MAXP, 

AE, and DPC. The Rabin algorithm requires one OR, two XORs, two shifts, and two more 

ARRAY lookup to determine the fingerprints and identify the chunk breakpoints, and it needs 

one conditional branch, as shown in Table 2.  The most common CDC method Rabin is an 

effective duplicate detection technique. Still, it takes more time to consume a while because it 

evaluates the chunk point to the satisfaction of all the operations set out in Table 2. TTTD 

requires two mod operations, one comparison, and five conditional branches. Fig. 4 shows the 

comparative analysis of the three existing algorithms such as Rabin, MAXP and AE. TTTD 

will not be discussed in Fig. 4, because the diagrammatic representation of TTTD is a little bit 

difficult. Hence, we used only three existing algorithms. But, the remaining sections of the 

work is compared with four existing CDC algorithms. 

In Fig. 4, the existing algorithms MAXP and AE to find the local extreme value using 

comparison operations and both approaches are different. However, AE is fast chunking 

algorithm in comparison with MAXP. Based on the difference between both algorithms as 

presented in Fig. 4. MAXP determines the local maximum value in the fixed-size region          

[A, B]. When the byte value M is the center position between the two windows, it has the local 

maximum value of the window, while the M value must be higher than any byte in the fixed 

windows [A, X] and [Y, B]. If every byte in the region [A, B] has been processed and M has 

the local extreme value, then it is declared as a chunk boundary or cut-point. Another fixed 

window of bytes in range of [Y, B] also to be scanned repeat if the MAXP process of the      

byte N. That means MAXP requires the data content of the byte to be stored in the fixed 

window immediately just before the current byte position. For this reason, MAXP needs two 

modular operations to change the array and two more operations, a comparison of 2-1 / p and 

a conditional branch of 5 + 1 / p to determine the local extreme value.  



1352                                           Ellappan et al.: Dynamic Prime Chunking Algorithm for Data Deduplication in Cloud Storage 

 

By contrast, AE needs to find the local extreme point in the asymmetric window [A, B], 

which includes a fixed window [Y, B] and a region of variable size [A, X], the size of which 

is determined by the input data stream content. The result, AE requires storing only at a local 

extreme value and maximum value of the position. AE does not need backtracking and keeps 

the same maximum point. Hence, the method requires only one comparison and two 

conditional branches. Fig. 4 shows the difference between AE and DPC algorithm. DPC uses 

two variable-size windows. DPC algorithm finds the maximum value M between the intervals 

of [A, B], which includes dynamic window region [Y, B] and variable size region [A, X],          

it is defined by the input of data stream content. The DPC algorithm needs one comparison 

and two conditional operations, as specified in an AE algorithm. However, the main difference 

between the two algorithms is that DPC uses the dynamic variable size window, conditional 

branch for time-consuming and table lookup operations, then the other three algorithms. The 

advantage of DPC reduces the long chunk variance based on maximum chunk size and 

improves the throughput of the deduplication system. The key idea of DPC is to reduce the 

processing time with minimum computational resource-intensive tasks. The DPC algorithm 

has framed two comparisons to achieve, as listed in Table 2.  

Chunk Size Variance: Chunk size variance is defined as a chunk size difference between 

the long chunk and small chunk in the length of the file. In AE, the throughput efficiency is 

high because fixing the minimum chunk size is 2 KB and maximum is 16 KB. To improve the 

performance slightly higher, our DPC works with the principle of prime chunk to determine 

the dynamic window size. In the entire scenario, the chunk breakpoint lies between the prime 

of 2KB with 11KB as an average of 6KB. Hence, the long chunk sequence avoids DPC, and 

the total number of chunks is reduced to improve the throughput and processing time. 

4. Experimental Setup and Datasets  

Our proposed work DPC has been implemented in the prototype of an open-source 

deduplication system named Destor [11, 38] on two machines, namely client and backup 

server. In the specification, the configuration of the two machines follows. The client machine 

runs on a virtual machine running the Ubuntu 12.04 operating system and has an 8-core Intel 

®  core TM i7-770CPU@3.60 GHz with 16.0 GB of RAM. Another and powerful backup 

server has an 8-core Intel@ xeon® E5-2640V2/2GHz with 64 GB RAM to run the Ubuntu 

14.04 operating system. To identify and remove the redundant chunk, Destor applies the    

SHA-1 cryptographic hash function. The system is experimentally evaluated to analyze the 

impact of the distribution of chunks and throughput. The performance of processing time and 

chunk time executes in the system. 

Multimedia and OS Datasets: Our experiments are performed on four CDC algorithms with 

different real-world multimedia and operating system.  

Multimedia: The data sets of our experiments include personal files for the home folder and 

media files. The files have been extracted from the resource of our Department Lab, Research 

Workstation, and Personnel PC. The media datasets are mainly movies, sports videos, online 

course materials videos, and video surveillance, which has been maintained by the Department 

server. Video file formats are MP4, avi, mkv, etc. 

Operating system: The datasets include the various version of Linux operating system 

images and many software-related compressed files. The datasets are more similar content 

between the data. The details of the dataset is shown in Table 3. 
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Table 3. Multimedia and OS Datasets 

Type Size (GB) No. of Files 

Home 46.3 9010 

Media files 29.3 259 

Linux Files 35.2 16 

Compressed 32.3 44 

5. Results and Discussion 

This section provides the comparative result analysis of CDC algorithms along with DPC. The 

performance metrics total chunk count, chunking and processing time, throughput, BSPS, and 

DER are tabulated in Table 4. 

 
Table 4. Comparative analysis of Rabin, TTTD, MAXP, AE and DPC  

Datasets Algorithm 

Total 

Chunk 

Count 

Chunk 

Time (s) 

Processing 

Time (s) 

Throughput 

(MB/s) 

BSPS 

(MB/s) 
DER 

Home 

Rabin 

TTTD 

MAXP 

AE 

DPC 

10009200 

8999200 

7976320 

7776320 

6765980 

1855.29 

2367.72 

2880.16 

2298.93 

1796.09 

4157.36 

3845.47 

3584.34 

3284.34 

3015.70 

       15.03 

16.54 

15.56 

14.45 

17.74 

288.44 

299.75 

189.14 

267.34 

328.15 

1.0321 

1.0425 

1.0589 

1.0569 

1.0661 

Media 

Rabin 

TTTD 

MAXP 

AE 

DPC 

7241570 

7031570 

7652990 

7452990 

6994540 

1332.95 

2585.29 

3240.10 

2805.81 

2386.62 

3832.39 

3602.32 

3360.55 

3160.55 

2952.65 

33.68 

30 

10.76 

9.72 

35.27 

745.78 

524.55 

480.83 

688.90 

755.14 

1.3139 

1.3345 

1.3414 

1.342 

1.3534 

Linux 

Rabin 

TTTD 

MAXP 

AE 

DPC 

9240750 

9430750 

9083490 

8834880 

8537010 

1744.09 

2475 

3750 

3346.63 

1280.19 

2767.59 

2626.27 

3062.07 

2862.07 

1906.59 

15.37 

14.57 

15.92 

9.35 

18.93 

249.91 

380.45 

343.34 

417.55 

900.11 

1.0495 

1.0495 

1.0894 

1.1806 

1.1869 

Compressed 

Rabin 

TTTD 

MAXP 

AE 

DPC 

7549770 

7439770 

8322600 

8122600 

5630230 

1416.33 

2744.25 

3390 

3067.76 

2435.49 

4001.55 

3500.41 

3750.97 

3450.97 

2890.69 

15.48 

20.54 

16.55 

9.6 

30.59 

39.65 

40.15 

20.21 

25.66 

59.07 

1.0000 

1.0068 

1.0091 

1.0054 

1.0094 

 
5.1 Total Chunk Count 
 

Fig. 5 compares the Rabin, TTTD, MAXP, AE, and DPC algorithms executed in all four 

datasets with the chunk count metrics. Fig. 5 represents the following observations. Firstly, to 

analyze total chunk counts, DPC outperforms Rabin, TTTD, MAXP, and AE. DPC reduces 

the average AE chunk count by 22 % and 25 %, respectively. Second, the average DPC reduces 

the AE chunk count by 3%.  We tested for four datasets, DPC reduces the chunk count since 

the window size dynamically fits based on min and max chunk size. 
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Fig. 5.  Total Number of Chunks for different datasets 

5.2 Chunking Time 

Fig. 6 briefly discusses the chunking time on the four different datasets such as home folder, 

media, Linux, and compressed files. DPC achieves lower chunking time than AE among the 

four algorithms. The reason for DPC inferior chunk time to AE is due to a reduction in chunk 

count, as shown in Fig. 5. 

 
Fig. 6.  Chunking Time Variance with datasets of CDC Algorithm  
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5.3 Chunking Throughput 
 
The chunking throughput has been determined by splitting the amount of data processed and 

the amount of total time taken to chunk the files.  Fig. 7 shows the impact of different chunking 

algorithms such as Rabin, TTTD, MAXP, AE, and DPC on the entire throughput of the system. 

For the easy way of description, we analyze the individual datasets along with the chunking 

algorithm. We observed that, DPC provides higher throughput as 18, 35, 19, 31 Mbps for the 

home, media, Linux, and compressed files in comparison with other CDC algorithms.  

 

 
Fig. 7.  Chunking Throughput with different CDC algorithms 

 

5.4 Processing Time 

 

 
Fig. 8.  Processing time for CDC algorithms 
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Fig. 8 evaluates the processing time for all CDC algorithms with various datasets. In Fig. 8, 

we depict the home folder, and the media file reveals a slight reduction in processing time 

compared with the existing AE algorithm. Similarly, for Linux and compressed files, our DPC 

provides maximally reduced processing time as compared to other CDC algorithms. 

5.5 Bytes Saved per Second (BSPS) 

The BSPS definition has been measured by dividing the number of duplicates found by the 

number of files processed and multiplying it by the throughput. The result for different datasets 

for the four chunking algorithms is considered in the proposed works illustrated in Fig. 9. Our 

results indicate that DPC has a higher throughput than other CDC algorithms, which helps to 

achieve higher bytes saved per second. 

 

 
Fig. 9.  BSPS for the four datasets 

 

      Deduplication Elimination Ratio (DER) is defined as the ratio between the input data to 

the stored data. The greater the value of DER infers high deduplication efficiency. The values 

are experimentally evaluated and are plotted in Table 4. Section 5 and Table 4 provides the 

evaluation of performance metrics such as chunk count, chunk time, throughput, processing 

time, BSPS, and DER. The metrics analyzed from different datasets of the existing four CDC 

algorithms are Rabin, TTTD, MAXP, and AE. While discussing the results, our proposed work 

DPC is compared only with AE. The main reason is, AE achieves higher throughput and it is 

a fast chunking method. Because it finds the maximum value and chunks boundary without 

backtracking. Similarly, DPC also has higher throughput and minimizes the chunk variance. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 4, April 2021                            1357 

 

 

Hence, DPC uses a dynamic window, min and max chunk size, maximum threshold, and finds 

the chunk breakpoint without backtracking. Rabin, TTTD, and MAXP are existing algorithms 

compared with DPC. These algorithms face the challenges of high computational overhead 

and low chunking throughput. Hence, DPC reduces the computational overhead and 

minimizes the processing time. DPC algorithm does not find more duplicate chunks in cloud 

storage because it is a hash-less chunking algorithm. Hence, in the next phase, we will improve 

the efficiency of the algorithm. 

6. Conclusion 

We presented DPC, a novel CDC algorithm that efficiently sets the dynamic variable size 

window to avoid the long chunk variance and quick process of the chunk breakpoint. As a 

result, DPC achieves low computational overhead, high throughput and reduces the processing 

time, chunk size, and existing CDC algorithms. The overall experimental results based on 

multimedia and operating system datasets demonstrate DPC's robust performance over the 

other existing algorithms in terms of BSPS and the efficiency of the backup storage system. 

In the future, we will focus on the next stage of indexing in deduplication to reduce the time-

consuming process of cloud storage. 
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